AD-A116 823

UNCLASSIFIED

R AND D ASSOCIATES ARLINGTON VA F/6 972
NEARLY ON LINE SCHEDULING OF MULTIPROCESSOR SYSTEMS WITH MEMORI~=ETC (U}

APR 82 T LAIs S SAHNI N00014~80-C~0650
TR=82-11

" eeee

S IE I IER
r dYePEy
Yivrer gy

$9q.
L
§FY R
P

REE

1

~
P
- g

gt

A

P 1

PR I I
LR EBY
CrARBY

R E R B N
"E’!Qﬂi

IERETE

A L AR N AN
Sleegegan -

CIRARENE

C.EKRRREEDR

>-[Ql§"l;

(AR E X R R

[

SoLessReRR e
SR L RN RN Iy 2 XY

S TN P
N EL T
SN P I £,
@ H DELLE %E
CEE EHEELLRLT
¥R%n EZO e Su-
¥ LE S X1 o
. ILEIER PEUFE s oow -
T FHEED Y PEHEERCCw
i [EEN LR S FERRERR . ¥
#¥eegns . E XX 3
L O §EE-
123
e ¥Ry
L RER PR
A A - P
- L EE P
: 4R]
%% -
L2 b
M TIiRE S
- TeEN -
“ [¥ e T
crrogdAnee TE T

LR

B2AIl21RD)
SRR 0DROS 3

! 2

Computer Science Department
136 Lind Hall
Institute of Technology

University of Minnesota
Minneapolis, Minnesota 55455

Nearly On Line Scheduling Of

Multiprocessor Systems With Memories
by j

Ten~Hwang Lai and Sartaj Sahni
Technical Report 82-11

April 1982
| -1
*Cover design courtesy of Ruth and Jay Leavitt '
—_ .
TBie co el 0 i e
for publiy: 2 v o Ld sive i . '

distribucon W calirmtvl. | }

Nearly On Line Scheduling Of
Multiprocessor Systems With Memories®

Ten-Hwang Lai and Sarlaj Sahni
University of Minnesota

Abstract

'We show that no multiprocessor system that contains at least one processor with
memory size smaller than at least two other processors can be scheduled nearly
on line to minimize the finish time. An eflicient nearly on line algorithm to
minimize Cp,, is developed for multiprocessor systems that do not satisfy the
preceding requirement. Finally, we review the complexity of some other
scheduling problermns for multiprocessor systems with memories.

Keywords and Phrases

Multiprocessor systems, memories, scheduling, nearly on line, Cpgy, complexity,
algorithm.

* The research reported here was supported, in part, by the Office of Naval

Research under contract N0O0014-80-C-0650.

1. Introduction

A uniform processor system with memoriags consists of aset of m, m 2 1, pro-
cessors P, 1 <i<m. A tuple (s, &) is associated with each processor F;. s is
the speed of F; and yq is its memory size. When u; = yp = ... = gy, the processor
system is referred to as a uniform processor system. A uniform processor sys-
tem with memories in which s, = 54 = ... = 5, is also called an identical proces-
sor system with memories. lf both s, = ... = 8, and K, = yp = ... = Uy, the pro-
cessor system is simply a system of identical processors.

Let J =§J; Ja, ..., Jal, be aset of n, n= 1, independent jobs. With every job,
Ji. a 4-tuple (&, my, 7y, &) is associated. ; , t; = O, is the processing require-
mant of job J;. So, a processor with a speed of s; would take t;/s; time to com-
pletely run job J;. m, is J;'s memory requirement. J; can be run (or processed)
only on those processors that have a memory size no smaller than my. 7 is J¢'s
release time. The processing of J; cannot begin until time 7;. Finally, d; is J;'s
dug time, 'This represents the time by which J;'s processing should complete. if
it does not, then J; is tardy.

A feusible preemptive schedule, S, for job set J on the processor system P =
§P,, Pz Pm} is an assignment of jobs to time slots on the processors such
that:
(a) No job is processed before its release time.
(b) No job is processed by more than one processor at any given time.

(e¢) No job is assigned to a processor with memory size less than the job's

memory requirerment.
(d) No processor processes more than one job at any time.

(e) The total processing assignment for each job equals its processing require-
ment.

If in addition to the above requirements, S is such that each job is pro-
cessed continuously from its start to its finish on the same processor, thenSis a
nonpreemptive schedule. The finish time, fy, of J; is the time at which the pro-
cessing of J; is completed. Note that f; is defined relative to a schedule S. The
length or finish time, Cpu(S), of schedule S is the least time by which all jobs
have been processed. So, Crmex(S) = max{f(}. The Cmex problem is that of

-3-
finding a schedule S that minimizes Cpay.

The lateness, L;, of job J; in schedule Sis f; — d;. The maximum lateness,
Lnax, of any job in S is max;{Ly]. The Lms problerm is thal of finding a schedule S
with minimum L.

Any algorithm that produces feasible preemptive schedules is called a
scheduling algorithm. A scheduling algorithm that generates schedules with
minimum Cpay is an opfimal scheduling algorithm. A scheduling algorithm that
generates the schedule from time 0 to time t {for every t) only using information
about jobs released before t is called an on line algorithm. If in addition to
knowning the jobs released before t, the algorithm also needs to know the next
release time (either t or following t), then the algorithm is neerly on line. A
scheduling algorithm that is not nearly on line is off line.

The Cmax problem is known to be NP-hard when S is required to be a
nonpreemptive schedule. This is true even for processor systems withm = 2, s,
= S M1 = g and job sets with r) = 75 = ... = r,, {5]. Hence, we shall be con-
cerned primarily with schedules in which preemptions are permitted.

For identical processor systems (ie,s; = sz = ... =spand) T up = ... =
Mm) there is an off line algorithm with complexity O(nlogmn) that obtains
schedules (if they exist) with a given Cpa [11]. Bruno and Gongzalez [4] have
developed an O(mn + nlogn) nearly on line algorithm that obtains optimal
schedules for identical processor systems.

If P is a uniform processor system (i.e., 4; = 4g = ... = iy) and all jobs have
the same release time, minimum Cpr.y Schedules can be obtained in O(n +
mlogm) time using the algorithm of Gonzalez and Sahni [8]. When the release
time are not necessarily the same, the off line algorithm of Sahni and Cho [12]
may be used to obtain schedules {(if they exist) with a given Cg,y in O{mn +
nlogn) time. If a nearly on line algorithm is desired, the algorithm of [13] is
nearly on line and generates optimal schedules in O(m®n + mnlogn) time. The
algorithms of [12] and [13] generate schedules with O{mn) preemptions. There
is another nearly on line algorithm for uniform processor systems. This is due
to Labetoulle et al. [8] and generates optimal schedules with O(n?) preemptions

in O(n®) time.

The problem of scheduling systems of identical processors with memories
has been studied by Kalura and shen [7] and Lai and Sahni [8]. Kalura and Shen
[7] develop an O{nlogm) (n = m) algorithm for the Cmsx problem when all jobs
have the same release time. Lai and Sahni [0] consider the Ly, problem when
all jobs have the same release time. The algorithm they develop has complexity
O(kn? + nlogn) where k is the number of distinct due times. Their algorithm can
also be used to solve the Cp,y problem when the release times are not neces-
sarily the same. When used for this problem, their algorithm is off line and has
the same complexity as for the L,z problem except that now k is the number of
distinct release times.

The general problem of scheduling systems of uniform processors with
memories has been studied by Lai and Sahni [10]. They obtain linear program-
ming formulations for both the Cpax and Ly, problems. The proposed algo-
rithms are off line. In addition, they also develop low order polynomial time
algorithms for special classes of processor systems when all jobs have the same

release time.

In this paper, we examine the problem of obtaining nearly on line algo-
rithms for uniform processor systems with memories. We may partition the set
of processors in a processor system into two partitions A and B such that B con-
tains all processors with the least memory and A contains the remaining proces-
sors. le., if the memory sizes u;, ue, Ma. j¢. and ug of a five processor system
are 10, 20, 10, 15, and 10, respectively, then B = {P;, Py, Ps} and A = {Pp, P,}. In
section 2, we show that whenever |A| 2 2, no nearly on line algorithm exists. In
section 3, we develop a fast nearly on line algorithm for the case |A| = 1. When [A]
= 0, the processor system is simply a uniform processor system and a nearly on
line algorithm for such systems already exists [8, 13]. Finally, in section 5 we
review the complexity of some scheduling problems for systems of processors
with memories.

2. =2

In this section, we show that whenever a uniform processor system contains at
least two processors that have a memory size larger than the smallest memory
size in the system, no nearly on line algorithm is possible.

To get a flavor for the proof, we first establish this result for the processor
system {P,, P, P3} with s, = s, = 53, and y; = up > us. Suppose that four jobs
are released at time 0. Their processing times are 1, 1, 3, and 3 respectively.
The memory requirements are y;, 4, 4s. and ug respectively. The next release
time is 1. The schedule from O to 1 must be constructed without any knowledge
of the jobs to be released at or after time 1. Let us consider two possible
schedules for this time interval. In the first of these, jobs 1 and 2 are the only
jobs scheduled on P, and P; from 0 to 1. Jobs 3 and 4 are used to utilize Ps.
The resulting schedwle is as in Figure 1(a). In the second schedule (Figure 1(b)),
jobs 1 and 2 are assigned to P, to utilize all of P,'s capacity from 0 to 1. Jobs 3
and 4 are assigned equally to #; and Ms.

0 1 and 2 1 0 1
d 2 1
P1 [1{7////// /A P1 /a“/ [7
/[/777
1 and 2 3 and 4
L7/
P2 [A P2 71////////
3 and 4 3 and 4
P3 1/ /777
77777777 B3 VA
(a) (b)
Figure 1

Note that if only 1 job with processing requirement 1 and memory require-
ment u, is released at time 1, then a schedule of length 3 can be obtained from
Figure 1(b). This is optimal. From the schedule of Figure 1(a), we can at best

-8-

obtain a schedule of length 3.5. Furthermore, all schedules of length 3 have the
form of Figure 1(b) from 0 to 1. On the other hand, if two jobs, each with a pro-
cessing requirement of 5 and memeory requirement of u,, are released at time 1,
then all schedules having a lenglh of 8 have Lhe form of Figure 1(a) from 0 Lo 1.
This is the optimal length. The best schedule that can be obtained from Figure
1(b) has a length of 8.5.

Since, the nature of the jobs to be released at time 1 is not known in
advance, there is no way to determine the form of the schedule from 0 to 1 in
order to guarantee a schedule with minimum Cp,,s. Hence, there is no nearly on
line algorithm for the processor system constructed above.

Theorem 1. Let {P,, Pa. ..., Pn}. m = 2, be an arbitrary system of m processors
with memory sizes &y, Mg, ..., m, and speeds s, Sg, ..., Sy, respectively. Let u =
ming§ui) A=§j |y > p): and B=1{j| u; = w. 1f |A| = 2, then there is no nearly on
line algorithm that minimizes Cpax for this processor system.

Proof: Without loss of generality, we may assume that 1, 2cAand 3¢ B, sp< s,
<s;forallj jeA-1{1, 2} and that ss<s; forall j, j &€ B. So, P, and P; are the
two slowest processors with memory larger than i and Pj is the slowest proces-
sor with memory equal to u.

Let Ay = sz/s;; Do = (sg/s)% and £ =1 + (1 + A + Ag)(1 + sg/53). Define
the m - 3 jobs J;, ¢ < i< m such that £ = s;f and m; = ;. Assume that these
jobs are released at time 0. Let R denote the set of remaining jobs released at
or after time 0. Assume that the optimal schedule for R U {J; | 4 < i < mj has
Crax = {. It should be clear that if R contains no job with memory requirement
larger than min{u,, 2}, then there is no advantage to having a schedule in which
jobs from R are scheduled on Py, Pg, Py,. So, we may assume that the jobs J;,
4< i< m,inJ are scheduled to tully utilize Py, Ps, ..., P, and that Py, Py, Pj are
tully available for R. Hence, we need only concern ourselves with job set R and

processors P,, P, and Pj.

Now suppose that R contains 8 jobs with £, = §,, tp = 55, t3 = (1 + A, + Ap)s,,
ta = (1 + A + Bg)sz + sa. ts = [(L3 + £4)/s5 - 1]s,, and tg = [(t3 + £4)/53 - 1]se.
Assume that m; =my = mg = ma = min {u,, u2j; ma=my=pu jobs 1,2, 3 and 4

-7 -

are released at 0; and jobs 5 and 8 are released at 1. All schedules with finish
time t have the form given in Figure 2(a).

1l + Al + A2
0 1 , f
P1 |(Jobs 1 and 2 Jobs 5 and 6
P2 |Jobs 1 and 2 Jobs 5 and 6
P3 Jobs 3 and 4 _J
(a)
0 1 1+ Ay 1+ él + Al — Ag y f
Py lJdob 1 Job 2| Job 5 Job 6
P, Job 4 Job 7
P3 Job 3 Job 4 Job 8
(b)
0
1 1+ Al -i)- A2 £
T
Pl Jobs 1 & 2
P2 Jobs 1 & 2
(c)
Figure 2

Next, suppose that R contains 8 jobs with the first four being as before. Let
A&y = (1 + Ay + Ag)sa/sgand let £5 = Aps,, £g = (1 + Ag)sy, L7 = (1 + Ag)sg and g =
OsS3. Assume that mg = min {u;, 4zl mg = my = my = u: job 5 is released at

A

-8-

time 1, and jobs 6, 7, and B are released at time 1 + A; + Az, A minimum Cpay
schedule for this set of B jobs is given in Figure 2(b). This schedule has length f.
It is easily verified that there is no schedule for this set of 8 jobs that both has a
finish lime of [and in which jobs 1 and 2 are scheduled as in Figure 2(a). To see
this, observe that tg/s; = Az < A} + 8; and tg/Sp = Ags/S2 = A; < A + A
Hence, no matter how job 5 is scheduled on P; and Pz from 1 to 1 + A, + A, (Fig-
ure 2(c)). there must be intervals in which both P, and P, are idle. Simultane-
ous idle times on P;, P, and FPj3 cannot be fllled up by jobs 3 and 4 alone.
Hence, no matter how jobs 3, 4, and 5 are scheduled on P;, P, and P3 from 1 to
1 + A + A& (in Figure 2(c)), there must be some idle time. Consequently the
overall schedule length must exceed f.

Since at time 0, there is no way to distinguish between the two job sets of
the previous paragraphs, there is no nearly on line algorithm for the given pro-
cessor systemn that minimizes Cpay. ®

S A2

When |A] = 0, all processors have the same memory size and the nearly on line
algorithm of Sahni and Cho [13] may be used to minimize Cpay. So, we need only
consider the case |A| = 1. In this case, the m processor system consists of m - 1
processors having the same memory size 4 and 1 processor with memory size
larger than u.

Let {P,, P,, ..., Py} be an m processor system with |A] = 1. Assume that the
processors have been indexed such that s; > s3> ... > s, and that P, is the lone
processor with memory size larger than u. We may arrive at a nearly on line
scheduling algorithm, by first determining how jobs with memory requirement
larger than u are to be scheduled.

Suppose that n jobs are to be scheduled and that their release times are r,,
Tg. ..., Ty, respectively. Let ¢,, cp, ..., ¢, be the distinct release times in the mul-
tiset {r;, 7g, ..., Tnl. We assume that ¢, < cz < cg < ... < cy. Let K; denote the
set of jobs with release time ¢; and having memory requirement larger than u.
Let S; be the set of jobs with release time ¢, and memory requirement u. Let 7;
be the sum of the processing requirements of the jobs in R;. We shall show that
there is always a minimum Cpex schedule in which the jobs in R; are scheduled

-9-

from 1, to §; = Ty + Ti/s,. where 7, is as given below:

Cy i=1
T = maxici. 61_;; i>1 (1)

¢y b ccypy ¢y b Ci41 c oo
3 1
4 3
L]
L
1 4 1 2
Pk
[}
.
L]
4
N/
(a) (v)
Figure 3

Consider any minimum Cp,, schedule for the given n jobs. Clearly, all jobs
u “
in ‘:JlR‘ must be scheduled on F,. Suppose that the jobs in ‘k_JlRi are not

scheduled as discussed above. Let r be such that there are no preemptions in
the interval (jr. (j+1)r) for any j. Further, no ¢, 7y, or §; is in the interval (jr,
(j+1)r) tor any j. (Note that r does exist since all values we deal with are rational
numbers.) The time interval 0 to Cpy may be divided into intervals of length r.
These intervals will be called r-intervals. Let a be the least i such that the inter-
val [7, 8,] has a job not in R; scheduled on F,. Let b be the leftmost r-interval
in [T, 64] such that the job scheduled on P, in this interval is not in R,. Let c

-10-

be the leftmost r-interval to the right of [T4, d4] such that the job scheduled on
Py in this interval is from fi;. (Note that no job in R, can be scheduled to the
left of [74, 6,].) Figure 3 shows two possible situations for b and ¢. In the first
(Figure 3(a)), bolh r-intervals lie belween Lwo conseculive release Limes. In Uhus
case, we merely interchange the scheduling assignments of the two r-intervals.
The resulting schedule satisfles the release time requirements. The second pos-
sibility is that at least one release time falls between the two r-intervals {Figure
3(b)). In this case, a straightforward interchange of the two r-intervals could
result in some jobs being scheduled before their release times. Assume that at
least one of the jobs scheduled in the r-interval ¢ has a release time greater
than c;. In this case, the interchange proceeds as follows. First interchange the
jobs scheduled in the r-intervals b and c on P, (jobs 1 and 2 of Figure 3(b)). If
job 1 was not previously scheduled in c, no conflict is created and we are done.
If job 1 was already scheduled in ¢, a conflict is created. The earlier scheduling
of 1in ¢ is exchanged with the job scheduled on the same processorinb, i.e., job
3 of Tigure 3(b). If job 3 was not already scheduled in ¢, we are done with the
interchange. If it was, then the earlier scheduling of 3 in ¢ is exchanged with job
4 scheduled on the same processor in b. And so on. This exchanging process is
clearly finite and has the result of producing a new schedule that does not

violate any of the release time requirements.

By continuing in the way described above, the original schedule may be
transformed into another schedule that has the same C,; and in which all jobs
in R; are scheduled on P, from 7, to 7y + T/ ;. 1 <i<u. Scheduling jobs in £
in this way is easily done on line.

Our nearly on line scheduling algorithm will construct the schedule in u
phases. In phase i, the schedule from c; to g;,,, 1 €i < u, will be constructed. In
phase u, the minimum Cp,.y is first computed. Let this value be £, ,,. Next, all
remaining jobs are scheduled in the interval [c,, cy+1]. The scheduling in phase
1 is done by first computing 7; using equation (1). Next, all jobs released at ¢,
and having memory requirement larger than u are scheduled from 1y to §; = 7
+ T/ s, on processor k. If §; = ¢y,,, then P, is not available for additional work
in the interval [c;, ¢;,;] and the schedule for the remaining processors is
obtained using one phase of the nearly on line algorithm of Sahm and Cho [13].
If 6; < cg4;, then P, is available for further processing from 6; to ¢;,, (Figure

o 4 541 . G 51 i
1 1
s
2
G
P, 2 ;
[]
L4]
[
* i G o Ske1 ‘i Sk
4
" HHEFA k S T s
) c k+2 K+1
kel g -+ S
: o k+3 . k+2
P k+2 -
[]
(a) g
Gm . 0 + m
(b)
PFigure 4
4(a)).

Let G. 1 =i=< m, be m processors with the same memory size. Let ;(t) be
the speed of G at time t. {G, Ga ..., Gn{ is a generalized processor system
(GPS) [12] iff each o;(t) is a nondecreasing function of time and o;(¢) = 0;,,(¢),
1si<mtorallt.

since the remaining jobs to be scheduled in [c;, c;,;] have the same
memory requirement u, we meay ignore the fact that P, has a larger memory
size. Hence, scheduling on the processor system of Figure 4(a) is equivalent to
scheduling on the GPS of Figure 4(b). 0;(t) for G is defined as below (we assume

Sm+1 = 0 for convenience):

8¢ . [1sick]or [k<i<m and §;<t<c(,,]
a‘(t) = Beyy k<i<m and C‘Stfsa‘ (2)

¥
Suppose that at time c; there are r jobs from ,ng, that have a nonzero

remaining processing requirement. Index these r jobs 1, 2, ..., r and let v

denote the remaining processing requirement of job i. We assume that the
indexing was done such that v, 2 vp 2 ... = 4,. We may determine if all these
jobs can be completed on the GPS of Figure 4(b) by using the following result
from [12].

-12-

Theorem 2 [Sahni and Cho]: Let {G,, Gp, ..., Ga] be a GPS and let o(t) be the
speed of &G at time t. Let {J,, ..., J,} be n jobs and let ¢, be the processing
requirement of job J;. Assumethat ¢;2tz> ... =, andthatn2m (if n < mwe

may introduce m - nn jobs with zero processing requirements). let I = i b, 1<
J=1

i<mand Ln = ;t,. The given n jobs can be scheduled on the given GPS to
=1

complete by time 4 iff

<
L‘stfa,(t)dt,lskSm (3)
°

i=

Cea1

d
I the v;s and the GPS of Figure 4(b) satisty (3) with f replaced by f , then
[€

all r jobs may be scheduled to complete by c4;. If (3) is not satisfied, then we
need to determine the amount w;, wy < v;, of job j that is to be scheduled in {c;,
c(+1]. These w;s can be obtained using the equalizing rule given in [13]. This
rule computes the w;s in such a way that

(8) wysv; 1<j<r
B wy2wy,, 1sj<r
(€) vy —wj2uy ~wjy, 1Sj <

Fia1

(d) l,st fo,(t)dt.lsqu
J=l ¢

where [y = i:w,, 1sq<m(ifr <nthenset w, = Wypg=..=u, =0)
=1

and L, = ¥ ;.

i

(e) i)(u, ~wy) is minimized subjected to the conditions (a) - (d) above for

i=1

every q. 1 < g < min{m, ri.

-13-

Note that algorithm EQUAL of [13] computes the uys only for a system of
uniform processors. It is, however, easily modified to do the same for the GPS of
Figurs 4(b). Furthermore, lemmas 2.1, 2.2, 2.3, and Theorem 2.1 of [13] hold in
the case of a GPS also (Lhough in {13] the proof is provided explicilly only for &
uniform processor system). This guarantees the success of our u phase schedul-
ing algorithm.

All that remains is the computation of cy4;. This is done using Theorem 2
with the ¢;s being the remaining processing times of the jobs at time c,,. Given

the simple nature of the GPS of Figure 4(b), the least §°, §'nyy. such that
8,40

L,,sf: fa,(t)dt, l<k<m

J=1 ¢

is easily computed. The minimum Cpax iS Cu+1 = 6y + ' min.

The actual scheduling of the w;s in any interval {ey, ¢i41] may be donc using
the GPS scheduling algorithm of [12]. Once again, since the GPS of Figure 4(b)
is quite close to being a uniform processor system (see Figure 4(a)). the
scheduling of the w;s may be done in a somewhat simpler manner by extending
the algorithm of Gonzalez and Sahni [8] to the processor system of Figure 4(a).

5. Complexity Issues

Published research on the scheduling of multiprocessor systems with memories
has been exclusively concerned with the scheduling of independent jobs to
minimize either Cpax o Limax ([7]. (9], and [10]). When precedence constraints
may exist amongst the jobs, the Cp,y problem is NP-hard even whenm = 2, 5, =
s, all jobs require one unit of processing time, and the precedence constraint is
as simple as a set of chains. This follows from the knowledge that the Cp,, prob-
lem with m = 2, unit processing times, chain precedence, and one resource of
capacity 1 is NP-hard [3]. To see this, observe that when one processor has a
memory size larger than the other {in a 2 processor system), memory is
equivalent to a single resource of size 1 (the job running on the processor with
larger memory is consjdered to be using the resource while the job running on

the other processor is not using the resource).

-14-

Another NP-hard result is a direct consequence of Blazewicz's [1] result
that when m = 2, s, = 85, 4; = Mg and a single resource with capacity 1 is avail-
able, the problem of minimizing the mean flow time ((1/n)} /) is NP-hard.
From this result, we see that minimizing the mean flow time whenm =2, i, >
Mg 8nd s, = s, is NP-hard.

8. Conclusions

We have obtained a sharp boundary between the multiprecessor systems for
which nearly on line scheduling algorithms that minimize Cp,,; exist and those
for which such algorithms do not exist. A polynomial time nearly on line algo-
rithm to minimize Cpay on those systems for which this is possible has also been
obtained. Finally, we have pointed out the similarity between multiprocessor
systems with memories and those with a single resource of capacity one.

References

1.

10.

11

J. Blazewicz, "Mean flow time scheduling under resource constraints,” Prel-
iminary Report 19/77, Institute of Control Engineering, Poznan, Poland,
1977.

J. Blazewicz, "Scheduling with deadlines and resource constraints,” Prelim-
fnary Report PR-25/77. Institute of Control Engineering, Poznan, Poland,
1977.

J. Blazewicz, J K. Lenstra, and A.H.G. Rinnooy Kan, "Scheduling subject to
resource constraints: Classification and complexity,” Report BW-127/80,
Department of Operations Research, Mathematical Center, Amsterdam,
1980.

J. Bruno and T. Gonzalez, "A New Algorithm for Preemptive Scheduling of
Trees,"” JACM, Vol. 27, No. 2, PP. 287-312, 1981.

M.R. Garcy and D.S. Johnson, "Computer and intractability, a guide to the
theory of NP-completeness,”" W.H. Freeman and Co., San Francisco, 1979.

T. Gonzalez and S. sahni, "Preemptive scheduling of uniform processor
sustems,” JACM, Vol. 25, 1978, PP. 82-101.

D.G. Kafura and V.Y. Shen, "Task scheduling on a multiprocessor system
with independent memories,” SICOMPF, Vol. 8, No. 1, 1977, PP, 187-187.

J. Labetoulle, E.L. Lawler, § K. Lenstra, and A.H.G. Rinnocoy Kan, ""Preemptive
scheduling of uniform machines subject to release dates,"” Report BW89,
Department of Operations Research, Mathematical Center, Armsterdam,
1977.

T.H. Lai and S. Sahni, "Preemptive scheduling of a multiprocessor system
with memories to minimize Lp..” Report No. 81-20, Computer Science
Dept., University of Minnesota, Minneapolis, 1981.

T.H. Lai and S. Sahni, "Preemptive scheduling of uniform processors with
memory.” Report No. 82-5, Computer Science Dept., University of Min-
nesota, Minneapolis, 1881.

S. Sahni, "Preemptive scheduling with due dates," OP RES, Vel. 27, No. 5,
1979, PP. 925-034.

-18-

12. S. Sahni and Y. Cho, “Scheduling independent tasks on a uniform processor
system,” JACH, Vol. 27, No. 3, 1980, PP. 550-563.

13. S. Sahni and Y. Cho, "Nearly on line scheduling of a uniform processor sys-
tem with release times,”” SICOMP, Vol. B, No. 2, 1878, PP. 275-285.

SECYRITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF'SE’EDC%‘SEE'E{%&@"FSOR“
1. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AD[vy D 2

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Nearly On Line Scheduling Of Multiprocessor Technical Report

Systems With Memories April 1982

6. PERFORMING ORG. REPORY NUMBER

7. AUTHOR(S) 7. CONTRACT OR GRANT NUMBER() ST

Ten-Hwang Lal and Sartaj Sahni R00014-80-C-0650 b

o el

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::g2“!‘0%4.‘!35"4?7“?0““0.1:!&:. TASK

Computer Science Department

University of Minnesota]
St. SE, Mpls, MN 5545b

1). CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Department of the Navy Apri] 1982 —
Office of Naval Research 13. NUMBER OF PAGES :
.|__A:J.1n§mne_n, 22217
4. MONITORING AGENCY NAME & ADDRESS(If dilferent from Controlling Office) 18. SECURITY CLASS. (of thie report)

UNCLASSIFIED
8e. DECLASSIFICATION/ DOWNGRADING T
SCHEDULE

18. DISTRIBUTION STATEMENT (of thie Report)

17. DISTRIBUTION STATEMENT (of the abe’.act entered in Block 20, il different trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identity by block number)

Multiprocessor systems, memories, scheduling, nearly on line, C !
Complexity, algorithm. max i

20. ABSTRACT (Continue on reverass slde If necessery and identify by block number)

We show that no multiprocessor system that contains at least one processor with
memory size smaller than at least two other processors can be scheduled nearly -
on line to minimize the finish time. An efficient nearly on line algorithm to
minimize cmax is developed for multiprocessor systems that do not satisfy the

preceding requirement, Finally, we review the complexity of some other
scheduling problems for multiprocessor systems with memories.

DD ,’ %" 1473 coimion oF 1 wov 68 13 oBsOLETE
$/N 0102-LF.014-660)

